p-th Order Optimality Conditions for Singular Lagrange Problem in Calculus of Variations. Elements of p-Regularity Theory

نویسندگان

  • Agnieszka Prusinska
  • Ewa Szczepanik
  • Alexey Tret'yakov
چکیده

This paper is devoted to singular calculus of variations problems with constraints which are not regular mappings at the solution point, e.i. its derivatives are not surjective. We pursue an approach based on the constructions of the p-regularity theory. For p-regular calculus of variations problem we present necessary conditions for optimality in singular case and illustrate our results by classical example of calculus of variations problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second-order Sufficient Optimality Conditions for Optimal Control of Static Elastoplasticity with Hardening

The paper is concerned with the optimal control of static elastoplasticity with linear kinematic hardening. This leads to an optimal control problem governed by an elliptic variational inequality (VI) of first kind in mixed form. Based on Lp-regularity results for the state equation, it is shown that the control-to-state operator is Bouligand differentiable. This enables to establish second-ord...

متن کامل

Necessary optimality conditions for the calculus of variations on time scales

We study more general variational problems on time scales. Previous results are generalized by proving necessary optimality conditions for (i) variational problems involving delta derivatives of more than the first order, and (ii) problems of the calculus of variations with delta-differential side conditions (Lagrange problem of the calculus of variations on time scales).

متن کامل

An analytic study on the Euler-Lagrange equation arising in calculus of variations

The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...

متن کامل

The Role of Symmetry in the Regularity Properties of Optimal Controls

The role of symmetry is well studied in physics and economics, where many great contributions have been made. With the help of Emmy Noether’s celebrated theorems, a unified description of the subject can be given within the mathematical framework of the calculus of variations. It turns out that Noether’s principle can be understood as a special application of the Euler–Lagrange differential equ...

متن کامل

New second-order optimality conditions in multiobjective optimization problems: Differentiable case

To get positive Lagrange multipliers associated with each of the objective function, Maeda [Constraint qualification in multiobjective optimization problems: Differentiable case, J. Optimization Theory Appl., 80, 483–500 (1994)], gave some special sets and derived some generalized regularity conditions for first-order Karush–Kuhn– Tucker (KKT)-type necessary conditions of multiobjective optimiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011